lambda calculus - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

lambda calculus - Übersetzung nach russisch

FORMAL SYSTEM IN MATHEMATICAL LOGIC
Lamda calculus; Lambda-calculus; Lambda abstraction; Lambda-definable function; Lambda-definable functions; Lambda calculas; Beta reduction; Alpha conversion; Lambda-recursive function; Lambda programming; Eta reduction; Lambda Calculus; Untyped lambda calculus; Λ-calculus; Alpha equivalence; Eta expansion; Abstraction operator; Alpha reduction; Beta substitution; Beta conversion; Α conversion; Λ calculus; Β-reduction; B-reduction; L-calculus; L calculus; A conversion; Beta-reduction; Λa-calculus; Lanbda-calculus; Lambda kalkül; Alpha renaming; Lambda calculi; Λ-abstraction; AlphaRenaming; Α-conversion; Capture-avoiding substitution; Lambda term; Lamda expression; Alpha-renaming; Alpha-conversion; Eta conversion; Eta-conversion; Η-conversion; Η conversion; Lambda language; Type-free lambda calculus; Typefree lambda calculus; Type free lambda calculus; Eta-reduction; Functional abstraction; Λx; Λy; Λz; Anonymous function abstraction; Lambda-calculi; Lambda-term bound variables; Lambda terms; Alpha equivalent

lambda calculus         

математика

лямбда-исчисление

functional abstraction         

математика

функциональная абстракция

абстракция функций

abstraction operator         

общая лексика

лямбда-оператор

оператор абстракции

Definition

beta conversion

Wikipedia

Lambda calculus

Lambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics.

Lambda calculus consists of constructing lambda terms and performing reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules:

  • x {\displaystyle x} – variable, a character or string representing a parameter or mathematical/logical value.
  • ( λ x . M ) {\textstyle (\lambda x.M)} – abstraction, function definition ( M {\textstyle M} is a lambda term). The variable x {\textstyle x} becomes bound in the expression.
  • ( M   N ) {\displaystyle (M\ N)} – application, applying a function M {\textstyle M} to an argument N {\textstyle N} . Both M {\textstyle M} and N {\textstyle N} are lambda terms.

The reduction operations include:

  • ( λ x . M [ x ] ) ( λ y . M [ y ] ) {\textstyle (\lambda x.M[x])\rightarrow (\lambda y.M[y])} – α-conversion, renaming the bound variables in the expression. Used to avoid name collisions.
  • ( ( λ x . M )   E ) ( M [ x := E ] ) {\textstyle ((\lambda x.M)\ E)\rightarrow (M[x:=E])} – β-reduction, replacing the bound variables with the argument expression in the body of the abstraction.

If De Bruijn indexing is used, then α-conversion is no longer required as there will be no name collisions. If repeated application of the reduction steps eventually terminates, then by the Church–Rosser theorem it will produce a β-normal form.

Variable names are not needed if using a universal lambda function, such as Iota and Jot, which can create any function behavior by calling it on itself in various combinations.

Übersetzung von &#39lambda calculus&#39 in Russisch